
1

OPENACC
Hands on Workshop

2

Before we begin…

Let’s get the AWS instance started

3

Getting access

Goto nvlabs.qwiklab.com, log-in or create an account

4

Select Openacc workshop link

5

Find lab and click start

6

Connection information

After about a minute, you should see

7

World Leader in Visual Computing

GAMING
PRO

VISUALIZATION
HPC & BIG DATA

MOBILE

COMPUTING

8

Power for CPU-only

Exaflop Supercomputer =
Power for the Bay Area, CA

(San Francisco + San Jose)

HPC’s Biggest Challenge: Power

9

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC

10

113

182

242

0

50

100

150

200

250

300

2011 2012 2013

0%

20%

40%

60%

80%

100%

2010 2011 2012 2013

Accelerated Computing Growing Fast

Rapid Adoption of
Accelerators

Hundreds of GPU
Accelerated Apps

NVIDIA GPU is
Accelerator of Choice

NVIDIA GPUs

85%

INTEL PHI

4%
OTHERS

11%

Intersect360 Research
HPC User Site Census: Systems, July 2013

Intersect360 HPC User Site Census: Systems, July 2013
IDC HPC End-User MSC Study, 2013

% of HPC Customers
with Accelerators

11

Diverse

Markets

Supercomputing
23%

Oil & Gas
12%

Defense/ Federal
13%

Higher Ed /
Research

15%

Med Image/ Instru
11%

Consumer Web
6%

Media & Entertain
9%

Finance
4%

CAE / MFG
7%

NVIDIA estimates

FY14 Segments

12

Top HPC Applications

Molecular Dynamics
AMBER

CHARMM
DESMOND

GROMACS
LAMMPS

NAMD

Quantum Chemistry
Abinit

Gaussian
GAMESS
NWChem

Material Science
CP2K

QMCPACK
Quantum Espresso

VASP

Weather & Climate
COSMO
GEOS-5
HOMME

CAM-SE
NEMO
NIM
WRF

Lattice QCD Chroma MILC

Plasma Physics GTC GTS

Structural Mechanics
ANSYS Mechanical
LS-DYNA Implicit

MSC Nastran

OptiStruct
Abaqus/Standard

Fluid Dynamics ANSYS Fluent
Culises

(OpenFOAM)

Solid Growth of GPU Accelerated Apps

Accelerated, In Development

113

182

272

0

50

100

150

200

250

300

2011 2012 2013

of GPU-Accelerated Apps

13

Conclusion

Accelerators are the future of high

performance computing

Now we have to learn how program them…

14

What is Heterogeneous Programming?

Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

15

3 Ways to Accelerate Applications

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

16

GPU Accelerated Libraries

Linear Algebra
FFT, BLAS,

SPARSE, Matrix

Numerical & Math
RAND, Statistics

Data Struct. & AI
Sort, Scan, Zero Sum

Visual Processing
Image & Video

NVIDIA

cuFFT,

cuBLAS,

cuSPARSE

NVIDIA

Math Lib NVIDIA cuRAND

NVIDIA

NPP

NVIDIA

Video

Encode

GPU AI –

Board

Games

GPU AI –

Path Finding

17

GPU Programming Languages

CUDA Fortran Fortran

CUDA C C

CUDA C++ C++

PyCUDA, Copperhead Python

Alea.cuBase F#

MATLAB, Mathematica, LabVIEW Numerical analytics

18

OpenACC: Open, Simple, Portable

• Open Standard

• Easy, Compiler-Driven Approach

• Portable on GPUs and Xeon Phi
main() {

 …

 <serial code>

 …

 #pragma acc kernels

 {

 <compute intensive code>

 }

 …

}

Compiler
Hint CAM-SE Climate

6x Faster on GPU
Top Kernel: 50% of Runtime

19

Simple: Directives are the easy path to accelerate compute

 intensive applications

Open: OpenACC is an open GPU directives standard, making

 GPU programming straightforward and portable across

 parallel and multi-core processors

Powerful: GPU Directives allow complete access to the massive

 parallel power of a GPU

OpenACC

The Standard for GPU Directives

20

OpenACC Partners

21

Focus on Parallelism and Data locality

With directives, tuning work focuses on exposing parallelism and

expressing data locality, which makes codes inherently better

Example: Application tuning work using directives for Titan system at ORNL

S3D
Research more efficient
combustion with next-
generation fuels

CAM-SE
Answer questions about specific
climate change adaptation and
mitigation scenarios

• Tuning top 3 kernels (90% of runtime)
• 3 to 6x faster on CPU+GPU vs. CPU+CPU
• But also improved all-CPU version by 50%

• Tuning top key kernel (50% of runtime)
• 6.5x faster on CPU+GPU vs. CPU+CPU
• Improved performance of CPU version by 100%
• Work was done in CUDA Fortran (not OpenACC)

22

Back to Heterogeneous Computing

Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

23

Low Latency or High Throughput?

CPU

 Optimized for low-latency

access to cached data sets

 Control logic for out-of-order

and speculative execution

 10’s of threads

GPU

 Optimized for data-parallel,

throughput computation

 Architecture tolerant of

memory latency

 More transistors dedicated to

computation

 10000’s of threads

24

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor Computation Thread/Warp

Tn

Processing

Waiting for data

Ready to be processed

Context switch W1

W2

W3

W4

T1

T2

T3

T4

25

Accelerator Fundamentals

We must expose enough parallelism to saturate the device

Accelerator threads are slower than CPU threads

Accelerators have orders of magnitude more threads

Fine grained parallelism is good

Coarse grained parallelism is bad

Lots of legacy apps have only exposed coarse grain parallelism

i.e. MPI and possibly OpenMP

26

Getting access

Goto nvlabs.qwiklab.com, log-in or create an account

27

Select Openacc workshop link

28

Find lab and click start

29

Connection information

After about a minute, you should see

30

Address of your

GPU Instance

Password to your

GPU Instance

Connection information

31

how to connect – nx

With NoMachine NX client 3.5

Click Configure

32

How to connect - NX

1. Cut and Paste address into the

Host box

2. Set Desktop to Unix & GNOME

3. Choose an appropriate display

size

4. Click Ok

33

how to connect – nx

1. Login is gpudev1

2. Copy & Paste

password

3. Click Login

34

how to connect – nx

If prompted, click yes

35

Hands On Activity (Example 1)

1. Download and untar hands on zip
%> tar –xzf OpenAccHandsOn.tgz

%> cd OpenAccHandsOn

%> cd {LANGUAGE}

%> cd example1

%> make

%> time ./a.out

2. Edit the makefile and switch to PGI compiler
C++: pgCC

Fortran: pgf90

3. Add optimization flag

-fast

36

APOD: A Systematic Path to Performance

Assess

Parallelize

Optimize

Deploy

37

Assess

Profile the code, find the hotspot(s)

Focus your attention where it will give the most benefit

HOTSPOTS

38

Hands On Activity (Example 1)

1. Profile the current application using pgprof

%> pgcollect ./a.out

%> pgprof –exe a.out

• For source in Fortran compile with -g

2. Double click on main
Which loops are the limiter?

Which loops are parallelizable?

39

40

Parallelize

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

41

Common Mistakes

We will highlight common mistakes people make throughout this

presentation

Look for the symbol to indicate common errors

42

Don’t forget acc

OpenACC Directive Syntax

C/C++

#pragma acc directive [clause [,] clause] …]
…often followed by a structured code block

Fortran

!$acc directive [clause [,] clause] …]
...often paired with a matching end directive surrounding a structured code block:

!$acc end directive

43

OpenACC Example: SAXPY

SAXPY in C SAXPY in Fortran

subroutine saxpy(n, a, x, y)

 real :: x(n), y(n), a

 integer :: n, i

 !$acc parallel loop

 do i=1,n

 y(i) = a*x(i)+y(i)

 enddo

 !$acc end parallel loop

end subroutine saxpy

...

! Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x, y)

...

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc parallel loop

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

44

OpenACC parallel loop Directive

parallel: a parallel region of code. The compiler generates a

 parallel kernel for that region.

loop: identifies a loop that should be distributed across threads

parallel & loop are often placed together

Parallel

kernel

Kernel:
A function that runs

in parallel on the

GPU

#pragma acc parallel loop

for(int i=0; i<N; i++)

{

 y[i] = a*x[i]+y[i];

}

45

Hands On Activity (Example 1)

1. Modify the Makefile to build with OpenACC

-acc Compile with OpenACC

-ta=tesla Target NVIDIA GPUS

2. Add parallel loop directives to parallelizable loops

3. Run again:

%> time ./a.out

Did the application get faster

or slower?

Remove –g from the compile flags

#pragma acc parallel loop

for(int i=0; i<N; i++)

 …

46

Hands On Activity (Example 1)

1. How do we know what happened?

2. Modify the Makefile again

-Minfo=accel Verbose OpenACC Output

3. Rebuild the application

47

pgCC -acc -Minfo=accel -ta=nvidia main.cpp

main:

 18, Accelerator kernel generated

 20, #pragma acc loop gang, vector(256) /* blockIdx.x threadIdx.x */

 18, Generating present_or_copy(b[:N])

 Generating Tesla code

 21, Accelerator kernel generated

 23, #pragma acc loop gang, vector(256) /* blockIdx.x threadIdx.x */

 21, Generating present_or_copyin(b[:N])

 Generating present_or_copy(a[:N])

 Generating Tesla code

 24, Accelerator kernel generated

 26, #pragma acc loop gang, vector(256) /* blockIdx.x threadIdx.x */

 24, Generating present_or_copyin(a[:N])

 Generating present_or_copy(b[:N])

 Generating Tesla code

Generated 3 Kernels

48

Optimize

Profile-driven optimization

CPU Tools:
gprof

pgprof

vampir

TAU

GPU Tools:
nsight NVIDIA Nsight IDE

nvvp NVIDIA Visual Profiler

nvprof Command-line profiling

49

NVIDIA’s Visual Profiler
Timeline

Guided

System
Analysis

50

NVPROF

Command line profiler

nvprof ./exe

Report kernel and transfer times directly

Collect profiles for NVVP

%> nvprof -o profile.out ./exe

%> nvprof --analysis-metrics -o profile.out ./exe

Collect for MPI processes

%> mpirun –np 2 nvprof -o profile.%p.out ./exe

Collect profiles for complex process hierarchies

 --profile-child-processes, --profile-all-processes

Collect key events and metrics

%> nvprof --metrics flops_sp ./exe

--query-metrics --query-events

51

Hands On Activity (Example 1)

1. Profile using PGIs built in OpenACC profiling

%> PGI_ACC_TIME=1 ./a.out

2. Run the application with nvprof and inspect output

3. Create a new NVVP session

Click on File

Select the executable

Click Next -> Finish

4. Explore the profile

Is the GPU busy?

What is the GPU doing?

How much time do we spend in kernels vs transfers?

52

PGI Profiler Output

 23: compute region reached 1000 times

 23: kernel launched 1000 times

 grid: [3907] block: [256]

 device time(us): total=21,135 max=493 min=2 avg=21

 elapsed time(us): total=53,352 max=561 min=30 avg=53

 23: data region reached 1000 times

 23: data copyin transfers: 2000

 device time(us): total=18,899 max=51 min=5 avg=9

 26: data copyout transfers: 1000

 device time(us): total=6,812 max=47 min= avg=6

 26: data region reached 1000 times

 26: data copyin transfers: 2000

 device time(us): total=18,900 max=50 min=2 avg=9

 29: data copyout transfers: 1000

53

NVPROF Output

==22104== NVPROF is profiling process 22104, command: ./a.out

==22104== Profiling application: ./a.out

==22104== Profiling result:

Time(%) Time Calls Avg Min Max Name

 59.04% 3.16076s 5000 632.15us 630.45us 649.59us [CUDA memcpy HtoD]

 36.56% 1.95739s 3000 652.46us 618.74us 672.95us [CUDA memcpy DtoH]

 1.90% 101.98ms 1000 101.97us 79.874us 104.00us main_24_gpu

 1.42% 75.930ms 1000 75.929us 75.170us 76.930us main_21_gpu

 1.08% 57.828ms 1000 57.827us 57.538us 59.106us main_18_gpu

54

NVVP Output

55

 Processing Flow

1. Copy input data from CPU memory/NIC to

GPU memory

PCI Bus

56

Processing Flow

1. Copy input data from CPU memory/NIC to

GPU memory

2. Load GPU program and execute

PCI Bus

57

Processing Flow

1. Copy input data from CPU memory/NIC to

GPU memory

2. Load GPU program and execute

3. Copy results from GPU memory to CPU

memory/NIC

PCI Bus

58

Defining data regions

The data construct defines a region of code in which GPU arrays

remain on the GPU and are shared among all kernels in that region.

Data Region

Arrays used within the

data region will remain

on the GPU until the

end of the data region.

#pragma acc data

{

 #pragma acc parallel loop

 ...

 #pragma acc parallel loop

 ...

}

Be careful with scoping rules

59

Data Clauses

copy (list) Allocates memory on GPU and copies data from host

to GPU when entering region and copies data to the

host when exiting region.

copyin (list) Allocates memory on GPU and copies data from host

to GPU when entering region.

copyout (list) Allocates memory on GPU and copies data to the host

when exiting region.

create (list) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another

containing data region.

and present_or_copy[in|out], present_or_create, deviceptr.

60

Array Shaping

Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

C99
#pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])

Fortran
!$acc data copyin(a(1:end)), copyout(b(s/4:s/4+3*s/4))

 C99: var[first:count]

 Fortran: var(first:last)

61

Hands On Activity (Example 1)

1. Modify the code to add a structured data region at the appropriate

spot

How does the compiler output change?

2. Retime the code

Is it faster now?

3. Reprofile the code using NVVP

What is the distribution of transfers vs kernels now?

How far apart are consecutive kernels?

#pragma acc data copy(...)

{

 ...

}

62

OpenACC enter exit Directives

enter: Defines the start of an unstructured data region

 clauses: copyin(list), create(list)

exit: Defines the end of an unstructured data region

 clauses: copyout(list), delete(list)

• Used to define data regions when scoping doesn’t allow the use of normal data

regions (e.g. The constructor/destructor of a class).

 #pragma acc enter data copyin(a)

...

#pragma acc exit data delete(a)

63

OpenACC enter exit Directives

 Every variable in enter should also appear at exit

 exit must appear before deallocation

 Order is important

#pragma acc data enter (Error)

 Data is not reference counted

(first exit will delete data)

64

Hands On Activity (Example 1)

1. Now use enter/exit data instead of a structured data region

#pragma acc enter data copyin(a)

...

#pragma acc exit data delete(a)

65

OpenACC update Directive

update: Explicitly transfers data between the host and the device

Useful when you want to update data in the middle of a data region

Clauses:

 device: copies from the host to the device

 self,host: copies data from the device to the host

#pragma acc update host(x[0:count])

MPI_Send(x,count,datatype,dest,tag,comm);

66

OpenACC kernels construct

The kernels construct expresses that a region may contain parallelism

and the compiler determines what can safely be parallelized.
#pragma acc kernels

{

 for(int i=0; i<N; i++)

 {

 a[i] = 0.0;

 b[i] = 1.0;

 c[i] = 2.0;

 }

 for(int i=0; i<N; i++)

 {

 a[i] = b[i] + c[i];

 }

}

kernel 1

kernel 2

The compiler identifies

2 parallel loops and

generates 2 kernels.

67

OpenACC parallel loop vs. kernels

PARALLEL LOOP

• Requires analysis by

programmer to ensure safe

parallelism

• Straightforward path from

OpenMP

KERNELS

• Compiler performs parallel

analysis and parallelizes what it

believes safe

• Can cover larger area of code

with single directive

• Gives compiler additional

leeway.

Both approaches are equally valid and can perform equally well.

68

Hands on Activity (Example 1)

1. Modify the code to the use kernels directive instead of parallel loop

Did it work?

#pragma acc kernels

{

 ...

}

69

Aliasing Rules Prevent Parallelization

 23, Loop is parallelizable

 Accelerator kernel generated

 23, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

 25, Complex loop carried dependence of 'b->' prevents parallelization

 Loop carried dependence of 'a->' prevents parallelization

 Loop carried backward dependence of 'a->' prevents vectorization

 Accelerator scalar kernel generated

 27, Complex loop carried dependence of 'a->' prevents parallelization

 Loop carried dependence of 'b->' prevents parallelization

 Loop carried backward dependence of 'b->' prevents vectorization

 Accelerator scalar kernel generated

70

OpenACC independent clause

Specifies that loop iterations are data independent. This overrides

any compiler dependency analysis
#pragma acc kernels

{

#pragma acc loop independent

for(int i=0; i<N; i++)

{

 a[i] = 0.0;

 b[i] = 1.0;

 c[i] = 2.0;

}

#pragma acc loop independent

for(int i=0; i<N; i++)

{

 a(i) = b(i) + c(i)

}

}

kernel 1

kernel 2

The compiler identifies

2 parallel loops and

generates 2 kernels.

71

C99: restrict Keyword

Declaration of intent given by the programmer to the compiler

Applied to a pointer, e.g.

 float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived from it

(such as ptr + 1) will be used to access the object to which it points”*

OpenACC compilers often require restrict to determine

independence

Otherwise the compiler can’t parallelize loops that access ptr

Note: if programmer violates the declaration, behavior is undefined

http://en.wikipedia.org/wiki/Restrict

 float restrict *ptr
 float *restrict ptr

http://en.wikipedia.org/wiki/Restrict

72

Hands On Activity (Example 1)

1. Use either restrict or independent along with acc kernels

Did it work?

How is this different than acc parallel?

float *restrict ptr

#pragma acc loop independent

73

OpenACC private Clause

#pragma acc parallel loop

 for(int i=0;i<M;i++) {

 for(int jj=0;jj<10;jj++)

 tmp[jj]=jj;

 int sum=0;

 for(int jj=0;jj<N;jj++)

 sum+=tmp[jj];

 A[i]=sum;

 }

#pragma acc parallel loop \

 private(tmp[0:10])

 for(int i=0;i<M;i++) {

 for(int jj=0;jj<10;jj++)

 tmp[jj]=jj;

 int sum=0;

 for(int jj=0;jj<N;jj++)

 sum+=tmp[jj];

 A[i]=sum;

 }

Compiler cannot parallelize because tmp is shared across threads

Also useful for live-out scalars

74

Deploy

Check API return values

Run cuda-memcheck tools

Library distribution

Cluster management

Early gains

Subsequent changes are evolutionary

Productize

75

Review

APOD: Access Parallelize Optimize Deploy

Use profile tools to guide your development

pgprof, nvvp, nvprof, etc

Write kernels using the parallel loop or kernels constructs

Minimize transfers using the data construct

Use the copy clauses to control which data is transferred

76

Hands on Activity (Example 2)

Given a 2D grid

Set every vertex equal to the average of neighboring vertices

Repeat until converged

Common algorithmic pattern

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

A(i,j) A(i+1,j) A(i-1,j)

A(i,j-1)

A(i+1,j)

77

Hands on Activity (Example 2)

1. Build & Run

2. Switch compiler to use PGI instead of GCC

3. Use pgprof to identify the largest bottlenecks

4. Use what you have learned to parallelize the largest function

Create the data region within this function for now

Can the second largest function be parallelized?

78

OpenACC reduction Clause

reduction: specifies a reduction operation and variables for which

that operation needs to be applied

int sum=0;

#pragma acc parallel loop reduction(+:sum)

for(int i=0; i<N; i++)

{

 ...

 sum+=…

}

79

Hands on Activity (Example 2)

1. Use the reduction clause to parallelize the error function

2. Optimize data movement to avoid unnecessary data copies

Hint: present clause

int sum=0;

#pragma acc parallel loop reduction(+:sum)

for(int i=0; i<N; i++)

{

 ...

 sum+=…

}

80

Nested Loops

Currently we have only exposed parallelism on the outer loop

We know that both loops can be parallelized

Let’s look at methods for parallelizing multiple loops

81

OpenACC collapse Clause

collapse(n): Applies the associated directive to the following n

tightly nested loops.

#pragma acc parallel

#pragma acc loop collapse(2)

for(int i=0; i<N; i++)

 for(int j=0; j<N; j++)

 ...

#pragma acc parallel

#pragma acc loop

for(int ij=0; ij<N*N; ij++)

 ...

 Loops must be tightly nested

82

Hands On Activity (Example 2)

1. Use the collapse clause to parallelize the inner and outer loops

Did you see any performance increase?

#pragma acc parallel

#pragma acc loop collapse(2)

for(int i=0; i<N; i++)

 for(int j=0; j<N; j++)

 ...

83

• Vector threads work in lockstep

(SIMD/SIMT parallelism)

• Workers have 1 or more vectors.

• Gangs have 1 or more workers and

share resources (such as cache,

the streaming multiprocessor,

etc.)

• Multiple gangs work independently

of each other

OpenACC: 3 Levels of Parallelism

Workers

Gang

Vector

Workers

Gang

Vector

84

OpenACC gang, worker, vector Clauses

gang, worker, and vector can be added to a loop clause

Control the size using the following clauses on the parallel region

parallel: num_gangs(n), num_workers(n), vector_length(n)

Kernels: gang(n), worker(n), vector(n)

#pragma acc parallel loop gang

for (int i = 0; i < n; ++i)

 #pragma acc loop worker

 for (int j = 0; j < n; ++j)

 ...

#pragma acc parallel vector_length(32)

#pragma acc loop gang

for (int i = 0; i < n; ++i)

 #pragma acc loop vector

 for (int j = 0; j < n; ++j)

 ...

 parallel only goes on the outermost loop

 gang, worker, vector appear once per parallel region

85

Hands On Activity (Example 2)

1. Replace collapse clause with some combination of

gang/worker/vector

2. Experiment with different sizes using num_gangs, num_workers,

and vector_length

What is the best configuration that you have found?

#pragma acc parallel loop gang num_workers(4) vector_length(32)

for (int i = 0; i < n; ++i)

 #pragma acc loop worker

 for (int j = 0; j < n; ++j)

 ...

86

Understanding Compiler Output

 Accelerator kernel generated

 15, #pragma acc loop gang, worker(4) /* blockIdx.x threadIdx.y */

 17, #pragma acc loop vector(32) /* threadIdx.x */

Compiler is reporting how it is assigning work to the device

gang is being mapped to blockIdx.x

worker is being mapped to threadIdx.y

vector is being mapped to threadIdx.x

Unless you have used CUDA before this should make absolutely no

sense to you

87

Software Hardware

Threads are executed by scalar processors

Thread

Scalar

Processor

Thread

Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one

multiprocessor - limited by multiprocessor

resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

CUDA Execution Model

blocks and grids can be multi dimensional (x,y,z)

88

Understanding Compiler Output

 Accelerator kernel generated

 15, #pragma acc loop gang, worker(4) /* blockIdx.x threadIdx.y */

 17, #pragma acc loop vector(32) /* threadIdx.x */

Compiler is reporting how it is assigning work to the device

gang is being mapped to blockIdx.x

worker is being mapped to threadIdx.y

Vector is being mapped to threadIdx.x

This application has a thread block size of 4x32 and launches as

many blocks as necessary

89

Thread

Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

A thread block consists of a

groups of warps

A warp is executed

physically in parallel

(SIMD) on a multiprocessor

Currently all NVIDIA GPUs

use a warp size of 32

=

CUDA Warps

90

Mapping OpenACC to CUDA

The compiler is free to do what they want

In general

gang: mapped to blocks (COARSE GRAIN)

worker: mapped threads (FINE GRAIN)

vector: mapped to threads (FINE SIMD)

Exact mapping is compiler dependent

Performance Tips:

Use a vector size that is divisible by 32

Block size is num_workers * vector_length

Generally having the block size between 128 and 256 is ideal.

91

Understanding Compiler Output

IDX(int, int, int):

 4, Generating implicit acc routine seq

 Generating Tesla code

Compiler is automatically generating a routine directive

Some compilers may not do this

Compiler may not be able to do it for some routines

92

OpenACC routine directive

routine: Compile the following function for the device (allows a

function call in device code)

 Clauses: gang, worker, vector, seq

#pragma acc routine seq

void fun(…) {

 for(int i=0;i<N;i++)

 ...

}

#pragma acc routine vector

void fun(…) {

 #pragma acc loop vector

 for(int i=0;i<N;i++)

 ...

}

93

OpenACC routine: Fortran

The routine directive may appear in

a fortran function or subroutine

definition, or in an interface block.

Nested acc routines require the

routine directive within each nested

routine.

The save attribute is not supported.

Note: Fortran, by default, passes all

arguments by reference. Passing

scalars by value will improve

performance of GPU code.

subroutine foo(v, i, n) {

 use …

 !$acc routine vector

 real :: v(:,:)

 integer, value :: i, n

 !$acc loop vector

 do j=1,n

 v(i,j) = 1.0/(i*j)

 enddo

end subroutine

!$acc parallel loop

do i=1,n

 call foo(v,i,n)

enddo

!$acc end parallel loop

94

Hands On Activity (Example 2)

1. Modify the code to use an explicit routine

2. Rebuild and rerun

#pragma acc routine seq

void fun(…) {

 for(int i=0;i<N;i++)

 ...

}

95

Hands On Activity (Example 3)

1. Accelerate the Mandelbrot code

2. Validate results using gthumb

96

Review

Use the reduction clause to parallelize reductions

Use routine to parallelize subroutines

Compiler output explicitly tells you what it is doing

Watch out for implicit parallelization, it may not be portable

e.g. reduction, routine, etc

Use collapse or gang, worker, and vector to parallelize nested loops

97

OpenACC atomic directive

atomic: subsequent block of code is performed atomically with

respect to other threads on the accelerator

Clauses: read, write, update, capture

#pragma acc parallel loop

for(int i=0; i<N; i++) {

 #pragma acc atomic update

 a[i%100]++;

}

98

Hands On Activity (Exercise 4)

Exercise 4: Simple histogram creation

1. Use what you have learned to accelerate this code

#pragma acc parallel loop

for(int i=0; i<N; i++) {

 #pragma acc atomic update

 a[i%100]++;

}

99

OpenACC host_data directive

host_data use_device(list):

 makes the address of the device data available on the host

Useful for GPU aware libraries (e.g. MPI, CUBLAS, etc)

#pragma acc data copy(x)

{

 // x is a host pointer here

 #pragma acc host_data use_device(x)

 {

 // x is a device pointer here

 MPI_Send(x,count,datatype,dest,tag,comm)

 }

 // x is a host pointer here

}

Host code that

expects device

pointers

100

int N = 1<<20;

float *x, *y

// Allocate & Initialize X & Y

...

cublasInit();

#pragma acc data copyin(x[0:N]) copy(y[0:N])

{

 #pragma acc host_data use_device(x,y)

 {

 // Perform SAXPY on 1M elements

 cublasSaxpy(N, 2.0, x, 1, y, 1);

 }

}

cublasShutdown();

CUBLAS Library & OpenACC

OpenACC Main Calling CUBLAS

OpenACC can interface with existing

GPU-optimized libraries (from C/C++ or

Fortran).

This includes…

• CUBLAS

• Libsci_acc

• CUFFT

• MAGMA

• CULA

• Thrust

• …

http://www.pgroup.com/lit/articles/insider/v5n2a2.htm

101

Review

Use atomic to parallelize codes with race conditions

Use host_data to interoperate with cuda enabled libraries

102

Optimization Techniques

http://www.pgroup.com/resources/openacc_tips_fortran.htm

http://www.nvidia.fr/content/EMEAI/tesla/openacc/pdf/Top-12-Tricks-for-Maximum-Performance-C.pdf

103

Minimize Data Transfers

Avoid unnecessary data transfers

Use the most appropriate data clause (don’t transfer if you don’t need to)

Leave data on the device if possible

104

Write Parallelizable Loops

bool found=false;

while(!found && i<N) {

 if(a[i]==val) {

 found=true

 loc=i;

 }

 i++;

}

bool found=false;

for(int i=0;i<N;i++) {

 if(a[i]==val) {

 found=true

 loc=i;

 }

}

for(int i=0;i<N;i++) {

 for(int j=i;j<N;j++) {

 sum+=A[i][j];

 }

}

for(int i=0;i<N;i++) {

 for(int j=0;j<N;j++) {

 if(j>=i)

 sum+=A[i][j];

 }

}

Use countable loops

 C99: while->for

 Fortran: while->do

Avoid pointer

arithmetic

Write rectangular

loops (compiler

cannot parallelize

triangular lops)

105

Inlining

When possible aggressively inline functions/routines

This is especially important for inner loop calculations

#pragma acc routine seq

inline

int IDX(int row, int col, int LDA) {

 return row*LDA+col;

}

106

Kernel Fusion

Kernel calls are expensive

Each call can take over 10us in order to launch

It is often a good idea to generate large kernels is possible

Kernel Fusion (i.e. Loop fusion)

Join nearby kernels into a single kernel

#pragma acc parallel loop

 for (int i = 0; i < n; ++i) {

 a[i]=0;

}

#pragma acc parallel loop

 for (int i = 0; i < n; ++i) {

 b[i]=0;

}

#pragma acc parallel loop

 for (int i = 0; i < n; ++i) {

 a[i]=0;

 b[i]=0;

}

107

Hands On Activity (Example 1)

1. Fuse nearby kernels

2. Rerun and profile

Did it get faster?

Do you see less launch latency?

108

Hands On Activity (Example 2)

We are going to inspect kernel performance using the profiler

1. Edit main.cpp and reduce the number of iterations to 10.

2. Open nvvp and generate a new timeline with this example

3. Click on the first kernel

4. Click on the analysis tab

5. Click on unguided analysis

6. Click analyze all

7. Look at the properties window.

Do you see any warnings?

109

Memory Coalescing

Coalesced access:

A group of 32 contiguous threads (“warp”) accessing adjacent words

Few transactions and high utilization

Uncoalesced access:

A warp of 32 threads accessing scattered words

Many transactions and low utilization

For best performance threadIdx.x should access contiguously

0 1 31 0 1 31

Coalesced Uncoalesced

110

Hands On Activity (Example 2)

1. Find a way to fix the coalescing

Did we get better?

Why aren’t we at 100%?

2. Apply this fix to both kernels

Verify your fix using nvvp

Did you see a performance improvement?

111

OpenACC async and wait clauses

async(n): launches work asynchronously in queue n

wait(n): blocks host until all operations in queue n have completed

Can significantly reduce launch latency, enables pipelining and

concurrent operations

#pragma acc parallel loop async(1)

for(int i=0; i<N; i++)

 ...

#pragma acc parallel loop async(1)

for(int i=0; i<N; i++)

 ...

#pragma acc wait(1)

112

Hands on Activity (Example 1)

1. Go back to example 1 and run it in nvvp

• How much time is there between consecutive kernels?

2. Add the async and wait clauses

3. Recompile and rerun

• Did the time between consecutive kernels improve?

#pragma acc parallel loop async(1)

for(int i=0; i<N; i++)

 ...

#pragma acc parallel loop async(1)

for(int i=0; i<N; i++)

 ...

#pragma acc wait(1)

113

OpenACC Pipelining

For this example,

assume that each

“plane” is completely

independent and must

be copied to/from the

device.

As it is currently

written, plane[p+1] will

not begin copying to

the GPU until plane[p] is

copied from the GPU.

#pragma acc data

for(int p = 0; p < nplanes; p++)

{

 #pragma acc update device(plane[p])

 #pragma acc parallel loop

 for (int i = 0; i < nwork; i++)

 {

 // Do work on plane[p]

 }

 #pragma acc update host(plane[p])

}

114

OpenACC Pipelining (cont.)

[p] H2D [p] kernel [p] D2H [p+1] H2D [p+1] kernel [p+1] D2H

[p] H2D [p] kernel [p] D2H

[p+1] H2D [p+1] kernel [p+1] D2H

P and P+1 Serialize

P and P+1 Overlap Data

Movement

NOTE: In real

applications,

your boxes will

not be so evenly

sized.

115

#pragma acc data create(plane)

for(int p = 0; p < nplanes; p++)

{

 #pragma acc update device(plane[p]) async(p)

 #pragma acc parallel loop async(p)

 for (int i = 0; i < nwork; i++)

 {

 // Do work on plane[p]

 }

 #pragma acc update host(plane[p]) async(p)

}

#pragma acc wait

OpenACC Pipelining (cont.)

Enqueue each

plane in a queue

to execute in

order

Wait on all

queues.

116

Hands On Activity (Example 3)

1. Pipeline the Mandelbrot code by batching rows

• What was the time for compute + copy before & after?

#pragma acc ...

for rows

 for cols

 …

//copy image to host

fwrite(...);

for batches {

 #pragma acc ... async(...)

 for rows in batch

 for cols

 ...

 //copy batch to host async

 #pragma acc update host(...) async(...)

}

//wait for execution

#pragma acc wait

fwrite(...)

117

Review

Minimize data transfers

Avoid loops structures that are not parallelizable

While loop & triangular loops

Inline function calls within kernels when possible

Fuse nearby kernels to minimize launch latency

Optimize memory access pattern to achieve coalesced access

threadIdx.x should be the contiguous dimension

Use async and wait to reduce launch latency and enable pipelining

118

Additional Topics

119

Runtime Library Routines

Fortran
use openacc

#include "openacc_lib.h"

acc_get_num_devices

acc_set_device_type

acc_get_device_type

acc_set_device_num

acc_get_device_num

acc_async_test

acc_async_test_all

C
#include "openacc.h"

acc_async_wait

acc_async_wait_all

acc_shutdown

acc_on_device

acc_malloc

acc_free

120

MPI Parallelization Strategies

One MPI process per GPU

Multi-GPU: use acc_set_device_num to control GPU selection per rank

Multiple MPI processes per GPU

Use NVIDIA’s Multi-Process Service (MPS)

Documentation: man nvidia-cuda-mps-control

Currently only supports a single GPU per node (multi-GPU POR in 7.0)

121

GPU

CUDA Server Process

CUDA

MPI

Rank 0

CUDA

MPI

Rank 1

CUDA

MPI

Rank 2

CUDA

MPI

Rank 3

Multi-Process Server Required for Hyper-Q / MPI

$ mpirun -np 4 my_cuda_app

No application re-compile to share the GPU

No user configuration needed

Can be preconfigured by SysAdmin

MPI Ranks using CUDA are clients

Server spawns on-demand per user

One job per user

No isolation between MPI ranks

Exclusive process mode enforces single server

One GPU per rank

No cudaSetDevice()

only CUDA device 0 is visible

122

Strong Scaling of CP2K on Cray XK7

Hyper-Q with multiple MPI

ranks leads to 2.5X

speedup over single MPI

rank using the GPU

http://blogs.nvidia.com/blog/2012/08/23/unleash-legacy-mpi-codes-with-keplers-hyper-q/

123

Advanced Data Layouts

OpenACC works best with flat arrays

Experimental support for objects is currently in PGI/14.4

Doesn’t always work

Work around: Copy data to local pointers/variables (C99 & Fortran)

#pragma acc data \

 copy(a[:],a.data[0:a.N]) \

 parallel loop

for(i=0;i<a.N;i++)

 a.data[i]=0;

int N=a.N;

float *data=a.data;

#pragma acc data \

 copy(data[0:N]) \

 parallel loop

for(i=0;i<N;i++)

 data[i]=0;

May work Works Fine

124

Review

OpenACC is open, simple, and portable

Assess, Parallelize, Optimize, Deploy

Assess: Find limiters

Parallelize & Optimize: Target limiters

Deploy: Get changes out the door

Fine grained parallelism is key

Expose parallelism where ever it may be

125

Challenge Problem: CG Solver

Accelerate this application to the best of your ability

Tips:

Matrix has at most 27 non-zeros per row (inner loop width is max 27)

Files:

main.cpp: the high level cg solve algorithm

matrix.h: matrix definition and allocation routines

vector.h: vector definition and allocation routines

matrix_functions.h: the matrix kernels

vector_functions.h: the vector kernels

126

Hands On Activity (Survey)

Please help us make this workshop better in the future:

https://www.surveymonkey.com/s/XJ6GVSQ

Questions?

https://www.surveymonkey.com/s/XJ6GVSQ
https://www.surveymonkey.com/s/XJ6GVSQ
https://www.surveymonkey.com/s/XJ6GVSQ

127

Office Hours

Let’s work on your codes now

