

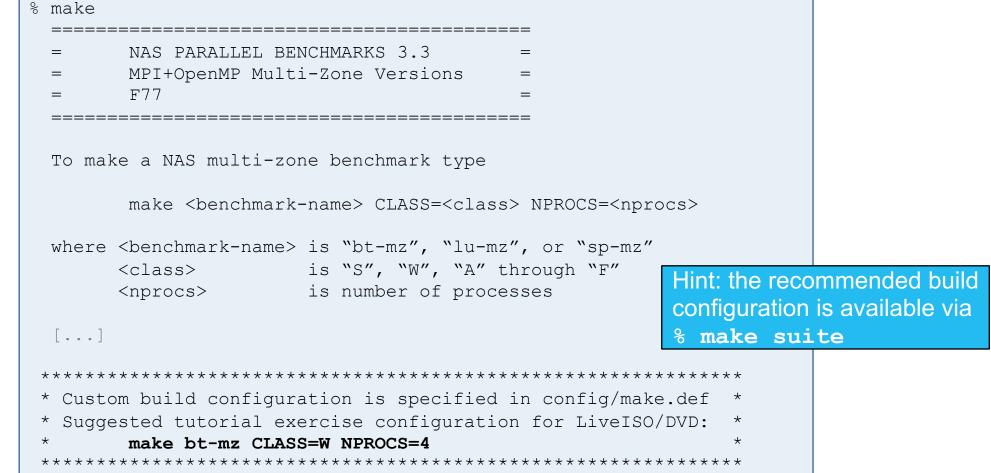
Vampir hands-on: Visualizing and analyzing NPB-MZ-MPI / BT

Demo example code: NPB-MZ-MPI / BT

NPB-MZ-MPI suite

- The NAS Parallel Benchmark suite (MPI+OpenMP version)
 - Available from: http://www.nas.nasa.gov/Software/NPB
 - 3 benchmarks in Fortran77
 - Configurable for various sizes & classes
- Move into the NPB3.3-MZ-MPI root directory

% cd tu	% cd tutorial; ls				
bin/	common/	jobscript/	Makefile	README.install	SP-MZ/
BT-MZ/	config/	LU-MZ/	README	README.tutorial	sys/


- Subdirectories contain source code for each benchmark
 - plus additional configuration and common code
- The provided distribution has already been configured for the tutorial, such that it's ready to "make" one or more of the benchmarks and install them into a (tool-specific) "bin" subdirectory

NPB-MZ-MPI / BT (Block Tridiagonal solver)

- What does it do?
 - Solves a discretized version of unsteady, compressible Navier-Stokes equations in three spatial dimensions
 - Performs 200 time-steps on a regular 3-dimensional grid
- Implemented in 20 or so Fortran77 source modules
- Uses MPI & OpenMP in combination
 - 4 processes with 4 threads each should be reasonable
 - don't expect to see speed-up when run on a laptop!
 - bt-mz_W.4 should run in around 13 seconds on a laptop
 - bt-mz_C.4 is more suitable for dedicated HPC compute nodes
 - Each class step takes around 10-15x longer

Building an NPB-MZ-MPI benchmark

 Type "make" for instructions

Building an NPB-MZ-MPI benchmark

- Specify the benchmark configuration
 - benchmark name: bt-mz, lu-mz, sp-mz
 - the number of MPI processes: NPROCS=4
 - the benchmark class (S, W, A, B, C, D, E): CLASS=W

```
% make bt-mz CLASS=W NPROCS=4
cd BT-MZ; make CLASS=W NPROCS=4 VERSION=
make: Entering directory 'BT-MZ'
cd ../sys; cc -o setparams setparams.c
../sys/setparams bt-mz 4 W
mpif77 -c -O3 -fopenmp bt.f
[...]
cd ../common; mpif77 -c -O3 -fopenmp timers.f
mpif77 -O3 -fopenmp -o ../bin/bt-mz_W.4 \
bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \
adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \
solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \
../common/print_results.o ../common/timers.o
Built executable ../bin/bt-mz_W.4
make: Leaving directory 'BT-MZ'
```

NPB-MZ-MPI / BT reference execution

Launch as a hybrid MPI+OpenMP application

```
% cd bin
% OMP NUM THREADS=4 mpiexec -np 4 ./bt-mz W.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 4 x
                         4
Iterations: 200 dt: 0.000800
Number of active processes:
Total number of threads: 16 ( 4.0 threads/process)
Time step
           1
Time step
            20
Time step 40
 [...]
Time step 160
Time step 180
                                           Hint: save the benchmark
Time step 200
Verification Successful
                                           output (or note the run time)
                                           to be able to refer to it later
BT-MZ Benchmark Completed.
Time in seconds = 5.57
```


Profile NPB-MZ-MPI / BT

NPB-MZ-MPI / BT Instrumentation

- Edit config/make.def to adjust build configuration
 - Modify specification of compiler/linker: MPIF77

# SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS					
<pre># # # Items in this file may need to be changed for each platform. #</pre>					
" • • • #					
# The Fortran compiler used for MPI programs					
<pre># #MPIF77 = mpif77 # Alternative variants to perform instrumentation Wrapper sp</pre>					
MPIF77 = scorep mpif77					
<pre># This links MPI Fortran programs; usually the same as \${MPIF77} FLINK = \$(MPIF77)</pre>					

NPB-MZ-MPI / BT Instrumented Build

Return to root directory and clean-up

 $\frac{9}{6}$ make clean

Re-build executable using Score-P compiler wrapper

```
% make bt-mz CLASS=W NPROCS=4
cd BT-MZ; make CLASS=W NPROCS=4 VERSION=
make: Entering directory 'BT-MZ'
cd ../sys; cc -o setparams setparams.c -lm
../sys/setparams bt-mz 4 B
scorep mpif77 -c -O3 -fopenmp bt.f
[...]
cd ../common; scorep mpif77 -c -O3 -fopenmp timers.f
scorep mpif77 -O3 -fopenmp -o ../bin.scorep/bt-mz_W.4 \
bt.o initialize.o exact_solution.o exact_rhs.o set_constants.o \
adi.o rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o \
solve_subs.o z_solve.o add.o error.o verify.o mpi_setup.o \
../common/print_results.o ../common/timers.o
Built executable ../bin.scorep/bt-mz_W.4
make: Leaving directory 'BT-MZ'
```

Measurement Configuration: scorep-info

Score-P measurements are configured via environmental variables:

```
% scorep-info config-vars --full
SCOREP ENABLE PROFILING
 Description: Enable profiling
 [...]
SCOREP ENABLE TRACING
 Description: Enable tracing
 [...]
SCOREP TOTAL MEMORY
 Description: Total memory in bytes for the measurement system
 [...]
SCOREP EXPERIMENT DIRECTORY
 Description: Name of the experiment directory
 [...]
SCOREP FILTERING FILE
 Description: A file name which contain the filter rules
[...]
SCOREP METRIC PAPI
 Description: PAPI metric names to measure
 [...]
SCOREP METRIC RUSAGE
 Description: Resource usage metric names to measure
 [... More configuration variables ...]
```

Summary Measurement Collection

 Change to the directory containing the new executable before running it with the desired configuration

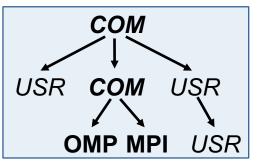
```
% cd bin.scorep
% export OMP NUM THREADS=4
% export SCOREP EXPERIMENT DIRECTORY=scorep bt-mz W 4x4 sum
\% mpiexec -np 4./bt-mz W.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 8 x 8
Iterations: 200 dt: 0.000300
Number of active processes:
Use the default load factors with threads
Total number of threads: 16 ( 4.0 threads/process)
Calculated speedup = 15.96
Time step 1
 [... More application output ...]
```

BT-MZ Summary Analysis Report Examination

- Creates experiment directory ./scorep_bt-mz_W_4x4_sum containing
 - A record of the measurement configuration (scorep.cfg)
 - The analysis report that was collated after measurement (profile.cubex)

% ls
bt-mz_B.4 scorep_bt-mz_W_4x4_sum
% ls scorep_bt-mz_W_4x4_sum
profile.cubex scorep.cfg

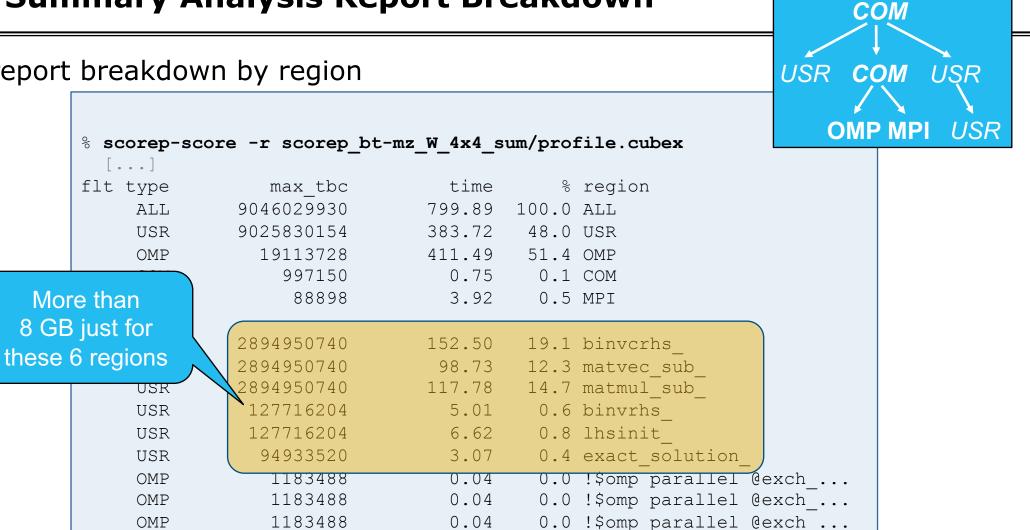
Congratulations!?


- If you made it this far, you successfully used Score-P to
 - instrument the application
 - analyze its execution with a summary measurement, and
 - examine it with one the interactive analysis report explorer GUIs
- revealing the call-path profile annotated with
 - the "Time" metric
 - Visit counts
 - MPI message statistics (bytes sent/received)
- ... but how good was the measurement?
 - The measured execution produced the desired valid result
 - however, the execution took longer than expected!
 - even when ignoring measurement start-up/completion
 - $\ensuremath{\,^{\mbox{\tiny IPP}}}$ it was probably dilated by instrumentation/measurement overhead

BT-MZ Summary Analysis Result Scoring

Report scoring as textual output

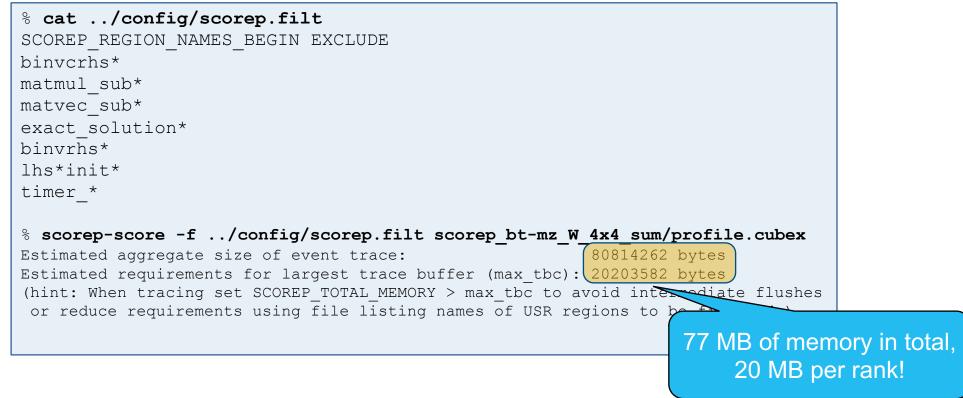
<pre>% scorep-score scorep_bt-mz_W_4x4_sum/profile.cubex</pre>								
Estimated a	Estimated aggregate size of event trace: 35965836622 bytes							
Estimated requirements for largest trace buffer (max tbc): 9046029930 bytes								
(hint: When tracing set SCOREP TOTAL MEMORY > max tbc to avoid intermediate fishes								
				R regions to be filtere				
flt type	max tbc	time	% region					
ALL	904602 <mark>9</mark> 930	799.89	100.0 ALL					
USR	9025830154	383.72	48.0 USR	33.5 GB total memory				
OMP	19113728	411.49	51.4 OMP					
COM	997150	0.75	0.1 COM	8.4 GB per rank!				
MPI	88898	3.92	0.5 MPI					


- Region/callpath classification
 - MPI (pure MPI library functions)
 - OMP (pure OpenMP functions/regions)
 - USR (user-level source local computation)
 - COM ("combined" USR + OpenMP/MPI)
 - ANY/ALL (aggregate of all region types)

BT-MZ Summary Analysis Report Breakdown

Score report breakdown by region

[...]


BT-MZ Summary Analysis Score

Summary measurement analysis score reveals

- Total size of event trace would be ~34 GB
- Maximum trace buffer size would be ~8.5 GB per rank
 - smaller buffer would require flushes to disk during measurement resulting in substantial perturbation
- 99.8% of the trace requirements are for USR regions
 - purely computational routines never found on COM call-paths common to communication routines or OpenMP parallel regions
- These USR regions contribute around 32% of total time
 - however, much of that is very likely to be measurement overhead for frequently-executed small routines
- Advisable to tune measurement configuration
 - Specify an adequate trace buffer size
 - Specify a filter file listing (USR) regions not to be measured

BT-MZ Summary Analysis Report Filtering

Report scoring with prospective filter listing
 6 USR regions

BT-MZ Summary Analysis Report Filtering

 Score report breakdown by region

reak-		_	score -r -f/co bt-mz W 4x4 sum/p		ilt \	
n		type		time	olo	region
	*	ALL	20203582	416.17	52.0	ALL-FLT
	+	FLT	9025826370	383.72	48.0	FLT
	_	OMP	19113728	411.49	51.4	OMP-FLT
Till and	*	COM	997150	0.75	0.1	COM-FLT
Filtered routines	-	MPI	88898	3.92	0.5	MPI-FLT
marked with `+'	*	USR	3806	0.00	0.0	USR-FLT
	+	USR	2894950740	152.50	19.1	binvcrhs_
	+	USR	2894950740	98.73	12.3	matvec_sub_
	+	USR	2894950740	117.78	14.7	matmul_sub_
	+	USR	127716204	5.01	0.6	binvrhs_
	+	USR	127716204	6.62	0.8	lhsinit_
	(+)	USR	94933520	3.07	0.4	exact_solution_
	-	OMP	1183488	0.04	0.0	!\$omp parallel @exch
	-	OMP	1183488	0.04	0.0	<pre>!\$omp parallel @exch</pre>
	-	OMP	1183488	0.04	0.0	!\$omp parallel @exch
	[.]				

BT-MZ Filtered Summary Measurement

Set new experiment directory and re-run measurement with new filter configuration

Adjust configuration and re-run measurement

```
% export OMP NUM THREADS=4
                % export SCOREP EXPERIMENT DIRECTORY=scorep bt-mz W 4x4 sum with filter
                % export SCOREP FILTERING FILE=../config/scorep.filt
Submit job
                % mpiexec -np 4 ./bt-mz W.4
                 NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
                 Number of zones: 8 x 8
                 Iterations: 200 dt: 0.000300
                 Number of active processes: 4
                 Use the default load factors with threads
                 Total number of threads: 16 ( 4.0 threads/process)
                 Calculated speedup = 15.96
                 Time step 1
                  [... More application output ...]
```

BT-MZ Tuned Summary Analysis Report Score

Scoring of new analysis report as textual output

<pre>% scorep-score scorep_bt-mz W_4x4_sum with filter/profile.cubex</pre>								
Estimated aggregate size of event trace: 80814262 bytes								
Estimated re	Estimated requirements for largest trace buffer (max tbc): 20203582 bytes							
(hint: When tracing set SCOREP TOTAL MEMORY > max tbc to avoid intermediate flushes								
or reduce r	or reduce requirements using file listing names of USR regions to be filtered.)							
flt type	max_tbc	time	% region					
ALL	20203582	218.95	100.0 ALL					
OMP	19113728	216.94	99.1 OMP					
COM	997150	0.73	0.3 COM					
MPI	88898	1.27	0.6 MPI					
USR	3806	0.00	0.0 USR					

Significant reduction in runtime (measurement overhead)

- Not only reduced time for USR regions, but MPI/OMP reduced too!
- Further measurement tuning (filtering) may be appropriate
 - E.g., use "timer_*" to filter timer_start_, timer_read_, etc.

Advanced Measurement Configuration: Metrics

Recording hardware counters via PAPI

% export SCOREP_METRIC_PAPI=PAPI_L2_TCM, PAPI_FP_OPS

Also possible to record them only per rank

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_TCM

Recording operating system resource usage

% export SCOREP_METRIC_RUSAGE_PER_PROCESS=ru_maxrss,ru_stime

Advanced Measurement Configuration: Metrics

- Available PAPI metrics
 - Preset events: common set of events deemed relevant and useful for application performance tuning
 - Abstraction from specific hardware performance counters, mapping onto available events done by PAPI internally

% papi_avail

 Native events: set of all events that are available on the CPU (platform dependent)

% papi_native_avail

Note: Due to hardware restrictions

- number of concurrently recorded events is limited
- there may be invalid combinations of concurrently recorded events

Advanced Measurement Configuration: Metrics Note: (1) Not all fields are maintained on % man getrusage each platform. (2) Check scope of metrics (per Available resource [... Output ...] process vs. per thread) usage metrics struct rusage { struct timeval ru utime; /* user CPU time used */ struct timeval ru stime; /* system CPU time used */ /* maximum resident set size */ long ru maxrss; ru ixrss; /* integral shared memory size */ long ru idrss; /* integral unshared data size */ long ru isrss; /* integral unshared stack size */ long /* page reclaims (soft page faults) */ long ru minflt; /* page faults (hard page faults) */ ru majflt; long /* swaps */ long ru nswap; /* block input operations */ long ru inblock; ru oublock; /* block output operations */ long ru msgsnd; /* IPC messages sent */ lonq /* IPC messages received */ lonq ru msgrcv; /* signals received */ ru nsignals; long /* voluntary context switches */ lonq ru nvcsw; /* involuntary context switches */ lonq ru nivcsw; }; [... More output ...]

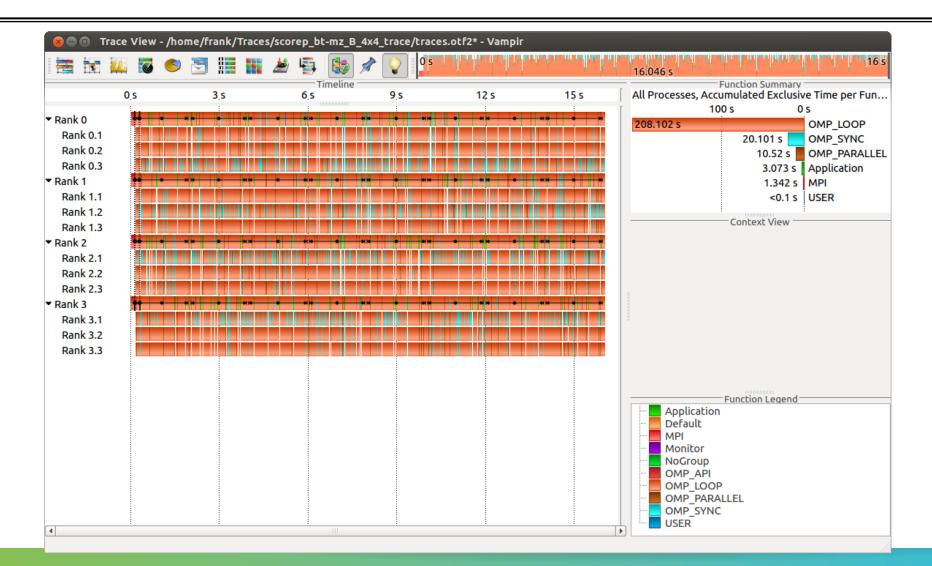
BT-MZ Trace Measurement Collection...

Adjust configuration and re-run the application using the tracing mode of Score-P

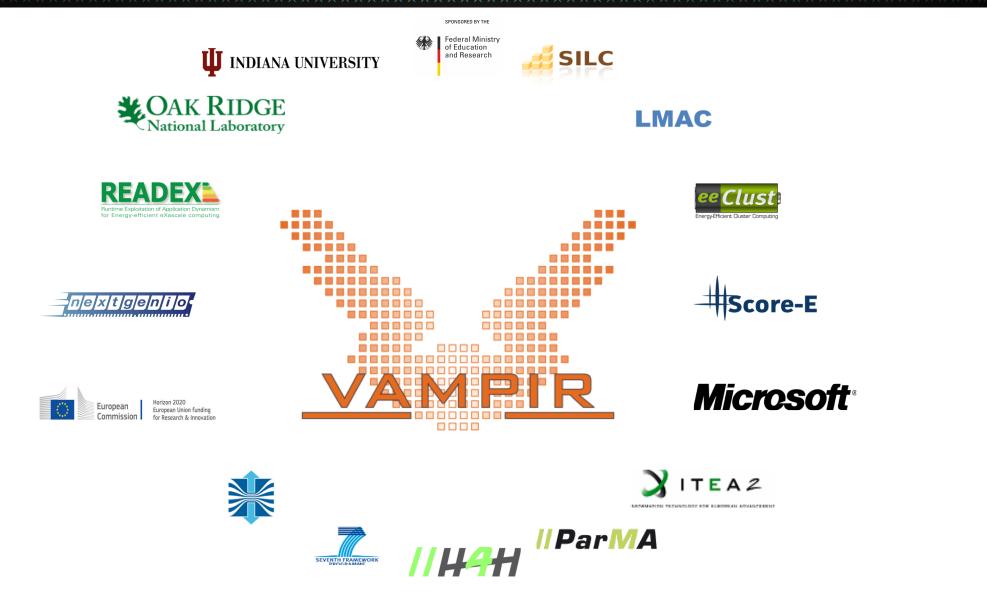
```
% export OMP_NUM_THREADS=4
% export SCOREP_EXPERIMENT_DIRECTORY=scorep_bt-mz_W_4x4_trace
% export SCOREP_FILTERING_FILE=../config/scorep.filt
% export SCOREP_ENABLE_TRACING=true
% export SCOREP_ENABLE_PROFILING=false
% export SCOREP_TOTAL_MEMORY=30M
% mpiexec -np 4 ./bt-mz_W.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
[... More application output ...]
```

 Separate trace file per thread written straight into new experiment directory ./scorep_bt-mz_B_4x4_trace

Visualize NPB-MZ-MPI/BT with Vampir


Start Vampir

```
% vampir <tracefile>
```


```
% vampir scorep_bt-mz_W_4x4_trace/traces.otf2
```

Start Vampir and load trace

Visualization of the NPB-MZ-MPI / BT trace

VI-HPS

http://www.vampir.eu

vampirsupport@zih.tu-dresden.de